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A key goal of biology is to construct networks that predict complex system behavior. We combine multiple types of molecular
data, including genotypic, expression, transcription factor binding site (TFBS), and protein–protein interaction (PPI) data
previously generated from a number of yeast experiments, in order to reconstruct causal gene networks. Networks based on
different types of data are compared using metrics devised to assess the predictive power of a network. We show that a network
reconstructed by integrating genotypic, TFBS and PPI data is the most predictive. This network is used to predict causal regulators
responsible for hot spots of gene expression activity in a segregating yeast population. We also show that the network can
elucidate the mechanisms by which causal regulators give rise to larger-scale changes in gene expression activity. We then
prospectively validate predictions, providing direct experimental evidence that predictive networks can be constructed by
integrating multiple, appropriate data types.

Large-scale genetic, transcriptomic, proteomic and metabolomic
datasets have enabled researchers to decipher the biological function
of individual genes, pathways, and, more generally, biological net-
works that drive complex phenotypes. However, the progress toward
uncovering the mechanisms by which these genes lead to complex
phenotypes has progressed at a slower rate. More recently, significant
progress has been made by integrating multiple sources of data
sampled from human and experimental populations to reconstruct
networks that are predictive of complex phenotypes. A number of
studies in a variety of species have demonstrated that predictive
networks can be built by leveraging naturally occurring DNA variation
to determine how such variation influences gene expression and other
molecular phenotypes. By examining the effects of naturally occurring
DNA variation on gene expression in segregating populations, other
phenotypes can be examined with respect to these same DNA
variations and ordered relative to the genes to infer causality1–4.
Network reconstructions based on protein–protein interaction data5,
metabolomic data6 and literature data7 are also now becoming more
routine. The common theme among these reconstruction efforts is the
organization of vast amounts of molecular data into networks that
capture fundamental properties of complex systems in states that give
rise to complex phenotypes.

Although advances in the application of network reconstruction
algorithms to high-dimensional biological data are being applied to a
number of distinct data types, such as protein–protein interaction

data5, metabolomic data6 and published gene-gene relationship data7,
no systematic studies have exploited the advantages that can be gained
by combining genotypic, gene expression, protein–protein interaction
and DNA–protein binding data to reconstruct whole gene networks.
Although comprehensive forms of these types of data are very rare at
present, yeast is one such system in which all of these data types
currently exist. Here, we apply recent advances in coexpression and
Bayesian network reconstruction methods to large-scale yeast datasets
in order to create yeast gene networks capable of predicting complex
system behavior. Specifically, we combine multiple types of large-scale
molecular data, including genotypic, gene expression, TFBS and PPI
data that were previously generated from a number of yeast experi-
ments, to reconstruct causal, probabilistic gene networks. We demon-
strate that the integration of these diverse data types in the context of a
genetic cross8 enhances the predictive power of the resulting gene
networks beyond what could be achieved by reconstructing gene
networks on the basis of expression data alone. We show that the
functional subnetworks represented in the more integrated net-
works are significantly enriched for genes under the control of
common genetic loci (that is, expression quantitative trait loci
(eQTL) hot spots9). We also demonstrate that such networks can
lead directly to the identification of the causal regulators for these
different functional subnetworks, with many of the predictions pro-
viding a putative mechanistic understanding of how the causal
regulators give rise to larger-scale changes in gene expression activity.
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Finally, we prospectively test and experimentally validate a number of
these predictions, providing direct experimental evidence that pre-
dictive networks can be constructed via the integration of multiple,
appropriate data types.

RESULTS
We assembled genotypic and expression data from 112 segregants
obtained from a yeast cross between the BY and RM strains of
Saccharomyces cerevisiae (referred to here as the BXR cross)8. Of the
5,740 genes represented on the microarrays used in this study,
5,180 were supported as having been sampled from a normal
distribution, thus satisfying important assumptions about the use of
the Pearson correlation statistic to reconstruct coexpression networks.
From this set, we selected 3,662 informative genes for the construction
of Bayesian networks for further network analysis (Supplementary
Methods online). We also gathered transcription factor binding site
(TFBS) data derived from multiple sources10,11 and protein–protein
interaction (PPI) data by combining the Saccharomyces Genome
Database and Database of Interacting Proteins yeast databases to
improve the structured priors for the Bayesian network recon-
structions, as detailed below. From these data sources, we constructed
four networks—one coexpression network and three different Baye-
sian networks—each of which took advantage of increasing amounts
of data. Coexpression networks represent correlations among expres-
sion traits, whereas probabilistic, causal Bayesian networks based on
integrative methods we have developed previously4,12 represent causal
relationships among genes. We test the predictive power of different
Bayesian networks constructed from increasing amounts of data by
comparing predictions made from the networks to experiments that
were independent of the experiments used to construct the networks
as well as to experiments we carried out prospectively to specifically
test the predictions.

The yeast coexpression network
We reconstructed the coexpression network for the set of 3,662
informative genes identified in the BXR cross using a previously
described weighted coexpression network algorithm13. A number of
studies have demonstrated previously that coexpression networks are
both scale free and modular2,14, thus highlighting functional compo-
nents of the network that are often associated with specific biological
processes. Therefore, to identify modules comprised of highly inter-
connected expression traits within the coexpression network, we
examined the topological overlap matrix15 associated with this
network. Supplementary Figure 1 online depicts a hierarchically
clustered topological overlap map in which the most highly inter-
connected modules in the network are readily identified. To identify
gene modules (subnetworks) formally from the topological overlap
map, we used a previously described algorithm that ensures that genes
in any given module are maximally interconnected relative to genes in
other modules (Supplementary Methods)2.

From the BXR topological overlap map (Supplementary Fig. 1),
15 modules were identified. We tested each of these modules for gene
enrichment using the yeast gene ontology (GO) categories for biolo-
gical processes, molecular functions and cellular components. Table 1
lists the most significantly enriched GO category for each module.
Thirteen modules were significantly enriched for at least one GO
category, indicating that the BXR coexpression network is organized
into functional units. For example, 20 of the 149 genes annotated as
belonging to the lipid metabolism GO biological process category fell
into the black module, comprised of only 44 genes (Fisher’s exact test
P value ¼ 3.31 � 10–17).

To assess whether modules in the yeast coexpression network are
enriched for genes controlled by common genetic loci, we carried out
a genome-wide linkage scan on each of the expression traits to map
eQTL for each of the expression traits. After partitioning the yeast
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Table 1 Network modules identified from the yeast cross are enriched for GO categories (columns 3–6) and eQTL hot spots (columns 7–10)

Module colora
Module

size

GO

category

typeb GO category

GO category

size (overlap)

GO enrichment

nominal P valuec Chr.

Within-chr.

genome

coordinate

eQTL hot spot

size (overlap)

eQTL enrichment

nominal P valuec

Turquoise 1,208 BP Cytoplasm organization and

biogenesis

169 (153) 7.47 � 10–58 2 550,000 186 (144) 2.87 � 10–39

Blue 369 BP Organic acid metabolism 235 (94) 4.44 � 10–34 3 70,000 50 (46) 1.61 � 10–42

Brown 290 BP Protein biosynthesis 292 (98) 2.63 � 10–41 14 450,000 206 (107) 2.92 � 10–69

Yellow 282 BP Generation of precursor

metabolites and energy

258 (46) 2.09 � 10–8 15 170,000 182 (134) 6.06 � 10–122

Green 84 MF Transferase activity 428 (20) 0.0012 2 570,000 25 (5) 0.00021

Red 83 BP Generation of precursor

metabolites and energy

168 (44) 6.54 � 10–39 15 570,000 25 (21) 2.28 � 10–32

Black 44 BP Lipid metabolism 149 (20) 3.31 � 10–17 12 650,000 52 (34) 2.37 � 10–60

Pink 43 BP Intracellular transport 275 (14) 1.41 � 10–6 14 450,000 206 (19) 1.92 � 10–13

Magenta 39 MF RNA binding 140 (18) 3.21 � 10–16 8 90,000 31 (4) 0.00028

Purple 37 BP Chromosome organization and

biogenesis (sensu Eukaryota)

200 (7) 0.0033 12 1,050,000 38 (31) 9.07 � 10–64

Green-yellow 31 CC Endoplasmic reticulum 213 (15) 2.39 � 10–11 12 670,000 68 (5) 0.00022

Tan 29 BP Response to chemical stimulus 153 (3) 0.12 5 110,000 24 (13) 4.84 � 10–23

Cyan 27 BP Response to chemical stimulus 153 (9) 7.55 � 10–7 3 210,000 33 (23) 5.26 � 10–56

Salmon 27 BP Biopolymer catabolism 140 (13) 2.71 � 10–12 12 670,000 68 (2) 0.089

Midnight blue 23 BP Reproduction 160 (15) 7.64 � 10–16 8 110,000 38 (23) 4.66 � 10–50

aModule colors for the yeast coexpression network correspond to the modules identified in Supplementary Figure 1. bBP, biological process; MF, molecular function; CC, cellular component.
cNominal P values represent the significance of the Fisher’s exact test statistic under the null hypothesis that the frequency of the indicated gene set is the same between a reference set of all
genes comprising the coexpression network (3,662 genes) and the set of genes comprising the network module. The column 6 P value corresponds to Gene Ontology gene sets for the functional
categories indicated. Given that 75 GO categories were tested, we set a P-value threshold of 0.05/75 ¼ 0.00067 (Bonferroni-adjusted threshold) for significance. The column 9 P value
corresponds to the eQTL hot spot gene sets. Given that 23 eQTL hot spots were tested, we set a P-value threshold of 0.05/23 ¼ 0.0022 (Bonferroni-adjusted threshold) for significance.
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genome into 603 bins, each 20 kb in length, we identified 23 bins in
chromosomes 1, 2, 3, 5, 8, 12, 13, 14 and 15 that contained at least
15 eQTLs each (defined as eQTL hot spots), 22 of which were identical
to the previously reported results from this dataset16. As shown in
Table 1, all but one of the 15 modules in the coexpression network are
significantly enriched for linking to at least one bin, thus suggesting
extensive pleiotropic effects of QTLs on expression traits in the
different bins, given each bin represents at least one QTL affecting
multiple gene expression traits. These results also suggest that much of
the correlation structure in the different modules is driven by
common genetic loci representing perturbations on a particular part
of the coexpression network, as we have shown in mouse17. For
example, there are 52 genes linked to the bin located on chromosome
12 between base-pair positions 640,000 and 660,000, and 34 of these
genes are located in the black module (Fisher’s exact test P value ¼
2.37 � 10–60). Therefore, the joint analysis of the genotypic and
coexpression data highlights that common genetic perturbations in
this cross affect the expression activity of subnetworks of genes, which
in turn affect the activity of important biological processes. For all
subsequent analyses, we merged the 23 eQTL-enriched bins into the
13 previously reported eQTL hot-spot regions for the BXR cross16.

The colocalization of entire network modules to common genetic
loci suggests that the coherence achieved within these modules is at
least partially driven by genes in the modules that are more directly
under the control of common factors. Although the eQTL hot spots
were originally reported as not enriched for linking to loci harboring
transcription factors (TF)16, the eQTL hot spots could be driven by
genes that are not TFs, but that affect TF activity. We found that 14 of
the 15 modules in the coexpression network were significantly
enriched (all Fisher’s exact test P value o0.01) for at least one TF
target gene set (Table 2). For example, 26 of 44 genes in the black
module are annotated as having a Hap1 binding site (Fisher’s exact
test P value ¼ 7.92 � 10–30). Notably, the gene encoding the Hap1 TF
physically resides in the chromosome 12 eQTL hot-spot region and
has a strong cis eQTL linked to this same region.

Naturally occurring DNA variations that influence expression traits
provide one way to test for coherence in the coexpression network

modules. However, directed single-gene perturbation experiments can
also be leveraged for this purpose. We generated knockout signatures
from a previously published yeast compendium dataset18 and found
that all of the network modules were significantly enriched for at least
one knockout signature gene set (Table 2). For example, the midnight
blue module depicted in Supplementary Figure 1 is comprised of
23 genes, most of which function in yeast mating; 20 of these genes
overlap with the signature from the double knockout of DIG1 and
DIG2 (Fisher’s exact test P value ¼ 1.07 � 10–18), which are repressors
of pheromone responsive transcription. These data not only demon-
strate how targeted gene perturbations can affect entire subnetworks,
but they also suggest that when genes in a highly connected module
are perturbed, these genes tend to move a significant proportion of the
module, reflecting a higher degree of causal connectivity among highly
interconnected genes than has been previously appreciated17.

Inferring clique communities from PPI networks
Protein–protein interaction data provide a complementary view of
molecular interactions at play in living systems. Unlike in coexpression
networks, edges in the PPI networks represent putative physical
interactions between two proteins. Combination of the SGD and
DIP yeast PPI data yields a network comprised of 4,833 nodes (distinct
proteins) and 15,345 edges between these nodes. To compare the PPI
and coexpression networks, we compared the correlation distribution
of gene pairs in the coexpression network that were also linked in the
PPI network with the correlation distribution of an equal number of
randomly selected gene pairs from the coexpression network.
Although the correlation distribution derived from the PPI-linked
genes is shifted slightly higher compared to randomly selected gene
expression trait pairs, most pairs linked by PPI are not highly
correlated (Supplementary Fig. 2 online).

The lack of correlation between gene expression trait pairs that
correspond to genes connected in the PPI network may be because the
different data types reflect different domains of information. The lack
of correlation may also be due to a high false-positive rate in the PPI
data, given that recent studies have explicitly demonstrated that PPI
data generated from high-throughput experiments are not very
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Table 2 Network modules identified from the yeast cross are enriched for genes that bind common transcription factors (columns 3–5) and for

gene expression changes induced by specific gene knockout strains or chemical compounds (columns 6–8)

Module colora
Module

size

Transcription

factor

TFBS target gene

set size (overlap)

TFBS enrichment

nominal P valueb

KO gene or

compound

KO signature

size (overlap)

KO enrichment

nominal P valueb

Turquoise 1,208 FHL1 94 (68) 3.01 � 10–15 CDC42 553 (230) 0.0000026

Blue 369 GCN4 204 (108) 1.92 � 10–58 ANP1 318 (119) 2.71 �10–44

Brown 290 ABF1 270 (34) 0.0037 RML2 395 (69) 2.46 � 10–11

Yellow 282 SKN7 202 (37) 2.99 � 10–7 CKA2 141 (55) 7.36 � 10–27

Green 84 REB1 237 (14) 0.00082 BUB1 231 (39) 7.89 � 10–26

Red 83 HAP4 66 (27) 5.01 � 10–29 DSK2 671 (44) 5.83 � 10–13

Black 44 HAP1 110 (26) 7.92 � 10–30 TERBINAFINE 145 (16) 2.58 � 10–12

Pink 43 REB1 237 (6) 0.056 MTC7 248 (8) 0.0072

Magenta 39 OPI1 42 (5) 0.000067 SWI5 48 (13) 3.71 � 10–16

Purple 37 YAP5 79 (11) 1.26 � 10–10 SWI4 560 (29) 1.36 � 10–17

Green-yellow 31 HSF1 52 (3) 0.0092 KAR2 597 (20) 1.88 � 10–9

Tan 29 SPT2 40 (3) 0.0036 FAR1 7 (4) 1.09 � 10–7

Cyan 27 MCM1 61 (7) 1.71 � 10–7 STE12 51 (8) 1.45 � 10–9

Salmon 27 RPN4 64 (8) 9.51 � 10–9 UBR2 29 (4) 0.000049

Midnight blue 23 DIG1 196 (18) 1.61 � 10–19 DIG1, DIG2 331 (20) 1.07 � 10–18

aModule colors for the yeast coexpression network correspond to the modules identified in Supplementary Figure 1. bNominal P values represent the significance of the Fisher’s exact test statistic
under the null hypothesis that the frequency of the indicated gene set is the same between a reference set of all genes comprising the coexpression network (3,662 genes) and the set of genes
comprising the network module. The column 5 P value corresponds to transcription factor target gene sets, and the column 8 P value corresponds to the knockout or compound signature gene sets.
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specific19. To identify higher-confidence interactions in the PPI data
that may better inform the coexpression network, we used a method
to explore the global structural organization of the PPI network in
terms of overlapping local network neighborhoods, referred to here as
‘clique communities’ (Supplementary Methods)20.

Applying this method to the yeast PPI data, we identified
492 cliques comprised of 5 or more proteins. A total of 112 clique
communities representing 2,477 unique links in the PPI network were
identified from these 492 cliques (Fig. 1). Of the 4,833 proteins in the
PPI network, only 840 (B17%) are represented in the 112 highly
interconnected clique communities. Compared with the full PPI
network, a larger portion of the gene pairs connected in the PPI
clique communities are also connected in the coexpression network
(Supplementary Fig. 2). We compared the clique communities with
manually curated stable protein complexes in MIPS21. Of the
74 protein complexes consisting of 5 or more proteins in this set,
72% (53/74) of them significantly overlapped with the clique com-
munities, and 74% of the clique communities significantly overlapped
the set of stable protein complexes. The clique communities were
generally significantly enriched for genes involved in protein com-
plexes, with 330 genes involved in protein complexes (out of
674 represented in the PPI network) overlapping the set of genes
comprising the clique communities (a 3.5-fold enrichment; P ¼ 1.54
� 10–96). The increased overlap between the PPI and coexpression
networks likely reflects the higher confidence links represented in the
clique communities of the PPI network, as well as the biological need
for proteins that are in complexes to be regulated to similar levels.

Our findings are consistent with previous reports22,23. However,
whereas these previous reports focused on known protein complexes23

and establishing associations between gene expression clusters and
protein interaction clusters22, here we have systematically uncovered
known and unknown complexes from the PPI data. Because PPI data
can be noisy, the clique-community analysis serves as a filter to
uncover not only the underlying building blocks (cliques) of the
PPI network, but also their high-level organization (communities)20.

Reconstructing probabilistic causal networks in yeast
Coexpression networks highlight how biological networks are orga-
nized into functional modules that are under the control of common
genetic loci and transcription factors, as well as how DNA variations at
specific loci perturb these network modules and in turn induce
changes in higher-order phenotypes. Despite these and other advan-
tages, coexpression networks do not provide explicit details on the
connectivity structure among genes in the network and do not
represent causal associations. A number of efforts have sought to
integrate different data types, such as gene expression, genotype,
PPI, TFBS and literature data, using a Bayesian approach24–26. How-
ever, the networks resulting from such efforts are still comprised of

modules from which causal information or detailed mechanisms at
the gene level are not easily derived. However, both simulation and
experimental results have demonstrated that Bayesian networks recon-
structed by incorporating genetic data lead to predictive networks12,27.
Here we extend this approach by integrating diverse data types,
including gene expression, genotype, TFBS and PPI data.

We used a Bayesian network approach to construct three networks:
(i) a Bayesian network based on expression data alone (BNraw), (ii) a
Bayesian network based on expression and eQTL data (BNqtl) and
(iii) a Bayesian network based on expression, eQTL, TFBS and PPI
data (BNfull). BNqtl was constructed by incorporating eQTL informa-
tion from the BXR cross as prior evidence that two genes are causally
related (Supplementary Methods). To complement the use of the
eQTL data, we constructed BNfull by incorporating TFBS data derived
from high-quality ChIP-chip experiments, phylogenetic conserva-
tion10, protein complex data and eQTL data. Manually curated
protein complexes21 and complexes identified by the clique-commu-
nity analysis described above for the PPI network were leveraged to
enhance the TFBS target gene sets28. If at least half of the genes in a
protein complex carried a given TFBS, then all genes in the complex
were added to that TFBS gene set (Supplementary Table 1 online). In
the Bayesian network reconstruction process, this extended TFBS
dataset was considered as prior evidence that two genes are causally
related (Supplementary Methods).

Testing whether the Bayesian networks are predictive
There were 3,779, 3,712 and 3,645 links in BNraw, BNqtl and BNfull,
respectively. All three Bayesian networks were highly similar with
respect to edge overlap when the edge direction was not considered,
demonstrating that the different networks captured the covariance
structure for the expression traits to a similar degree. In fact, BNraw

and BNqtl had 3,335 edges in common (B90% overlap) and BNqtl and
BNfull had 3,335 edges in common (B86% overlap). To test the
relative power of these networks to predict system behavior, we
examined whether the networks could recapitulate known biological
processes. We tested whether the networks could predict the GO
categories, whether the networks could predict genes regulated by
different transcription factors and whether the networks could predict
the expression responses to gene knockout signatures represented in
the yeast compendium dataset18.

First, we found that similar coherence with respect to GO categories
was achieved in all networks. A total of 75 GO terms (46 GO biological
processes, 16 GO cellular components and 13 GO molecular functions
categories) were searched for enrichment in each of the Bayesian
networks. We found that 26, 27 and 22 signature sets were significantly
enriched (permutation P value o0.01) in BNraw, BNqtl and BNfull,
respectively (Supplementary Table 2 online). These results demon-
strate that each of the Bayesian networks captured a significant
proportion of the associations among genes known to operate in
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a b Figure 1 A generic approach to identifying clique communities in the PPI

network. (a) Hierarchical clustering over the clique-clique similarity matrix

heat map derived from a network of the 492 k-cliques with k � 5. Cliques

in the rows and columns are sorted by an agglomerative hierarchical

clustering algorithm. The clique network clearly displays strong modularity

under hierarchical organization. Each of the colored bars along the top

horizontal and left vertical axes represents a network module. (b) The clique

community network. Each node represents a clique and each link indicates

that the two connected cliques have a similarity greater than 0.5 on the

basis of the Tanimoto measure. Nodes that do not belong to any module are

colored gray. Of the clique communities represented in this plot, 74%

overlap the set of stable protein complexes.
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common pathways. The GO categories represent the association-based
relationships between genes rather than the cause-effect relationships
reflected in gene-specific perturbation data such as the yeast compen-
dium data18. Therefore, this result suggests that the eQTL and TFBS
data contribute mainly to making causal inferences.

Second, we found that BNqtl and BNfull predict TF targets signifi-
cantly better than BNraw. We identified 15, 19 and 30 TF target sets
that were significantly enriched in BNraw, BNqtl and BNfull, respectively
(Supplementary Table 2). Because BNfull was constructed using the
TFBS data as priors, it is unfair to compare this network to the other
two networks. However, the extent of enrichment between BNqtl and
BNraw was significantly different (Wilcoxon signed-rank test P ¼
0.0002), indicating that eQTLs enhance the power of the Bayesian
networks to infer causal associations.

Third, we found that BNqtl and BNfull predict knockout signatures
better than BNraw. One of the true tests of a causal network is the
ability to predict what genes will change in response to a specific
perturbation. Single and double gene perturbation experiments enable
testing the predictive power of a network in this way. We used a
previously published yeast knockout compendium18 consisting of 300
expression profiles from 287 knockout strains and 13 chemical
perturbation experiments to carry out this test for each of the Bayesian
networks. We found that 92, 111 and 116 signature sets were
significantly enriched (permutation P value o0.01) in BNraw, BNqtl

and BNfull, respectively (Supplementary Table 2). In addition, the
significance values of the enrichments for BNqtl and BNfull were much
greater than that for BNraw (Wilcoxon signed-rank test P ¼ 1.09 �
10–5; Supplementary Fig. 3 online).

Dissecting eQTL hot spots using Bayesian networks
Like transgenics, gene knockouts and other artificial perturbations,
eQTLs represent perturbations that affect gene expression traits. In
some cases, a given QTL may have pleiotropic effects on a number of
expression traits, leading to eQTL clusters that colocalize to a common
genetic locus (known as an eQTL hot spot). From the BXR data used
to reconstruct the Bayesian networks, we have previously identified 13
eQTL hot spots, with 9 putative regulators proposed for 8 of the hot
spots that were based on genes with known biological functions and

cis eQTLs that were coincident with these hot spots (Table 3)16. We
identified all of the gene expression traits linked to each of the 13 hot
spot regions and then searched each of these gene sets for enrichment
in subnetwork structures in BNraw, BNqtl and BNfull, similar to the
tests for enrichments carried out above. All but two small eQTL hot
spots were enriched in subnetworks of BNraw, BNqtl and BNfull

(Supplementary Table 3 online).
One objective method for assessing the predictive power of each

Bayesian network is to use the different networks to infer the
causal regulators for each of the eQTL hot spots. To identify causal
regulators for a given hot spot, we selected genes that gave rise to a
putative cis eQTL in the corresponding eQTL hot spot region. For
this set of putative regulators, we defined the signature for each
regulator as the set of genes in the subnetwork that could be
reached by the putative regulator following directed links throughout
the entire network. The signature for each putative regulator was
then intersected with the set of genes linked to the corresponding hot
spot region. If the significance of the overlap was significant, we
declared the putative regulator as a regulator of the hot spot and
associated subnetwork.

We predicted the causal regulators for the eQTL hot spots repre-
sented in BNraw, BNqtl and BNfull. Causal regulators were inferred from
BNraw for seven of the eQTL hot spots, with two of these regulators
matching those previously identified in the BXR cross16. However, ten
causal regulators were inferred from BNqtl and six of these matched
regulators that were previously identified in this cross16. Causal
regulators were also inferred from BNfull for nine eQTL hot spots.
Again, six of the regulators matched those previously identified for
this cross (Table 3). For eQTL hot spots 5 and 6, BNraw failed to
predict the correct regulators when the regulators were known,
whereas BNqtl and BNfull correctly identified the regulators in these
instances (Table 3). These results support that although there is strong
similarity between the different Bayesian networks, when we compare
the extent of local network enrichments for genes operating in known
pathways, the networks constructed by incorporating the eQTL, TFBS
and PPI data as prior information on the relationships among pairs of
genes have greater power to infer causal regulators for validated
signature gene sets. We examined 9 of the 13 previously identified
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Table 3 Causal regulators identified in the original publication on the BXR cross and predicted using the different Bayesian networks described

in the main text

Bayesian network

eQTL

hot spot

Hot spot

chr.

Hot spot base-pair

position

Yvert et al.

predictions16 BNraw BNqtl BNfull

1 2 390,000 None predicted AGP2 None predicted None predicted

2 2 560,000 AMN1, MAK5 AMN1 AMN1 TBS1, TOS1, ARA1, CSH1, SUP45, CNS1, AMN1

3 2 710,000 None predicted None predicted None predicted None predicted

4 3 100,000 LEU2 CIT2, MATALPHA2 LEU2, MATALPHA1, CIT2 LEU2, ILV6, NFS1, CIT2, MATALPHA1

5 3 230,000 MATALPHA1 None predicted MATALPHA1 MATALPHA1

6 5 130,000 URA3 None predicted URA3 URA3

7 8 130,000 GPA1 ARN2, SPO11 GPA1 GPA1

8 12 680,000 HAP1 None predicted HAP1 HAP1

9 12 1,070,000 SIR3 YRF1-4 YRF1-4, YRF1-5 YRF1-4, YRF1-5, YLR464W

10 13 70,000 None predicted SMA2 SMA2 None predicted

11 14 503,000 None predicted TOP2 SAL1, TOP2 SAL1, TOP2

12 15 180,000 None predicted NDJ1 PHM7, HAL9, SKM1 PHM7

13 15 590,000 CAT5 None predicted None predicted None predicted

The ‘none predicted’ designation indicates that no causal regulator could be identified for the indicated hot spot.
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eQTL hot spots16 in the BXR cross for which a causal regulator could
be identified in BNfull. The percentage of variance for each eQTL hot
spot that can be explained by a causal regulator in BNfull is summar-
ized in Supplementary Table 4 online. The network was used to
elucidate the mechanism driving the eQTL hot spot activity, and
we used experimental methods to validate prospectively all of the
new predictions.

In a number of cases, causal regulators for eQTL hot spots
previously proposed and/or tested16 were predicted by BNqtl and
BNfull, thereby serving as positive controls. For example, our analyses
indicated that the mitotic exit regulator AMN1 is causal for the
variation of a subset of transcripts linking to eQTL hot spot 2,
which has been confirmed in previous work16. We also made detailed
predictions regarding the mechanism of variation of additional
transcripts linking to this hot spot (Supplementary Data online).
Our analyses identified GPA1 as the causal regulator for hot spot 7 and
the transcription factor HAP1 as the causal regulator for hypoxia-
related transcripts in hot spot 8, both consistent with previous work16.
We used previously reported microarray results to experimentally
confirm the causal regulator roles predicted for these genes (Supple-
mentary Data). It is important to note that for each of these
regulators, hypotheses in previous studies were generated on the
basis of manual curation, whereas our methods are data driven and
objective, predicted by BNfull, which was constructed by integrating
eQTL, expression, TFBS and PPI data.

We also examined hot spot 4, which encompasses LEU2, encoding
the leucine biosynthetic enzyme. The RM parent of the BXR cross
contains an engineered LEU2 deletion, whereas BY is wild-type;
previous analyses identified expression effects in the cross that are
likely the result of this perturbation16. In keeping with this, in BNfull

we observed a subnetwork enriched for amino acid biosynthesis
pathways (enrichment P ¼ 1.70 � 10–47) containing genes whose
expression linked to the hot spot 4 region. LEU2 was predicted as a
causal regulator for this subnetwork, confirming as above that our
inference methods correctly identify known biological effects in the
cross (Fig. 2a).

To investigate the mechanism by which LEU2 deletion causes
expression changes, we first noted enrichment in the subnetwork of
genes with binding sites for LEU3 (enrichment P ¼ 1.42 � 10–8) and
GCN4 (P ¼ 3.81 � 10–12), consistent with the known roles of these
transcription factors in regulation of amino acid biosynthesis genes.
We also observed strong overlap between the subnetwork and the
GCN4 knockout gene expression signature (Fig. 2b; P ¼ 1.04 �
10–75). We profiled the expression of a LEU2 knockout strain and
found strong overlap between this signature and the hot spot, as
expected (P ¼ 4.91 � 10–18); again, known GCN4 and LEU3 targets
were enriched in the signature, suggesting that LEU3 and GCN4 are
likely to be key mediators of the LEU2 deletion effects. Notably, the
amino acid biosynthesis gene ILV6 also lies in the hot spot 4 region
and its expression shows strong linkage in cis; in fact, our methods
inferred ILV6 as an additional key causal regulator for the hot spot
(Fig. 2a). In particular, ILV6 was predicted to be causal for GCN4.
We profiled the expression of an ILV6 knockout strain and found
significant overlap with the hot spot 4 subnetwork (P ¼ 4.03 �
10–52), including upregulation of GCN4 and many of its targets
(Fig. 2b). Our inference of ILV6 as a major regulator can be explained
by either of two models. Naturally occurring polymorphisms in ILV6
and the engineered deletion of LEU2 may together act as the genetic
causes of expression variation linked to hot spot 4. Alternatively, the
LEU2 deletion may be the sole genetic difference responsible for the
hot spot, causing expression changes in ILV6 that in turn trigger

downstream effects. In either case, our data confirm that variation in
ILV6 expression can influence expression of genes in the hot spot 4
subnetwork as predicted.

We also analyzed eQTL hot spots with no previously identified
causal regulators. Two BNfull subnetworks were found to be enriched
for genes in hot spot 12 (see Supplementary Fig. 4 online for the large
subnetwork). The larger of the two subnetworks was enriched for
carbohydrate metabolism (P ¼ 4.87 � 10–14), whereas the smaller
network was enriched for amino acid biosynthesis (P ¼ 1.56 � 10–10).
The large subnetwork is comprised of 452 genes, which were enriched
for targets of the MSN2 (represented by PIL1 in the network) and
SKN7 transcription factors, and also showed more modest enrichment
of the targets of the transcription factors MSN4, which responds to
stress; CIN5, which responds to salt stress; XBP1, which responds to
starvation or stress; and REB1 (represented by ENP2). The main
transcription factor for the small subnetwork is GCN4. The small
subnetwork overlaps the hot spot 4 subnetwork just described. In this
case, the amino acid biosynthesis processes are likely responding to
stress rather than causing stress.

Our method predicted a single causal regulator for the large
subnetwork: PHM7, a gene of unknown function that is regulated
by phosphate levels29. A cis-acting polymorphism is known to affect
PHM7 expression between RM and BY30, suggesting a model in which
differential expression of PHM7 in the BXR progeny drives expression
variation of genes in hot spot 12. The MSN2 and MSN4 transcription
factors are known to mediate the expression response to phosphate
and to more general stressors31, suggesting that variation in PHM7
might influence expression of stress-related genes in the BXR cross
through these factors. To test the role of PHM7 in regulation of hot
spot 12 genes, we deleted PHM7 in the BY background and measured
genome-wide expression via microarray, of this strain and wild-type
BY, under phosphate-limited conditions. We found that 1,329 tran-
scripts showed a significant difference between the two strains; this set
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ILV6
GCN4

LEU2 ILV6

GCN4

Smaller
subnetworks

a b

Figure 2 eQTL hot spot 4 subnetworks. (a) Subnetworks in BNfull enriched

for expression traits linked to eQTL hot spot 4. Of the 3,662 genes

comprising BNfull, 203 link to eQTL hot spot 4. There are 309 genes

comprising the three subnetworks shown here, and 170 of these genes

link to eQTL hot spot 4 (red nodes), a nearly tenfold enrichment over what
was expected by chance (empirical P o 10–8). LEU2 and ILV6 were

identified as the primary causal regulators for the large subnetwork, as

described in the text. ILV6 is supported as causal for GCN4 in the large

subnetwork. (b) The ILV6 knockout signature is enriched in the large eQTL

hot spot 4 subnetwork. Of the 635 genes in the ILV6 knockout signature,

432 were represented in BNfull, and 129 of these overlapped the large

eQTL hot spot 4 subnetwork (colored nodes), a nearly fourfold

enrichment over what was expected by chance (Fisher’s exact test

P ¼ 4.04 � 10–52). The red and green nodes represent genes that are up-

and downregulated, respectively, in the ILV6 knockout signature (note that

GCN4 is upregulated).
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was enriched for targets of MSN2 (P ¼ 1.66 � 10–4) and of the
upstream regulator SOK2 (P ¼ 7.11 � 10–4). Of the genes changing in
response to the PHM7 deletion, 817 are in BNfull, and 155 of those are
in the hot spot 12 subnetwork (Supplementary Fig. 4b; enrichment
P ¼ 2.70 � 10–10), confirming that variation in PHM7 can influence
expression of genes in the subnetwork as predicted. We note that 65%
of the genes in the hot spot 12 subnetwork are not in the PHM7
signature, suggesting that PHM7 may be one of multiple causal,
polymorphic regulators. As we showed for eQTL hot spot 4 where
multiple causal regulators may be at play, validation of PHM7
as a causal regulator does not exclude the existence of other
causal regulators.

Although our analysis well demonstrates the ability of expression-
based networks to identify causal regulators with polymorphic tran-
scription, such networks may fail to identify causal regulators with
polymorphic protein function. A large BNfull subnetwork was found
to be enriched for genes in hot spot 11 (Supplementary Fig. 5 online).
Our methods inferred the putative mitochondrial transporter SAL1 as
the main causal regulator of this subnetwork. The BY strain bears a
frameshift allele in SAL1, which truncates the protein product by
49 residues relative to that in RM and results in a loss of its function as
a suppressor of a deletion of adenine nucleotide translocase32. To test
the role of the SAL1 polymorphism in expression variation in the BXR
cross, we introduced the RM version of the SAL1 coding region into
the BY genome as a replacement at its own locus, and in parallel, we
introduced the BY region into the RM background by the same
method. We measured expression in these strains via microarray and
computed expression changes for each gene between the engineered
strains and their wild-type counterparts. The expression changes for
genes not in the subnetwork were close to zero (mean ¼ –0.0114, s.d.
¼ 0.2326), whereas the expression changes for genes in the sub-
network were slightly larger (mean ¼ 0.1209, s.d. ¼ 0.2358), although
not significantly so at the 0.05 level. However, the two-sample
Kolmogorov-Smirnov test shows that the distributions of the two
groups are significantly different (P ¼ 1.57 � 10–22), suggesting that
SAL1 may have a minor, causal regulatory role.

To expand our search for causal regulators in this case, we used a
complementary approach to identify regulators that may not be
detected by gene expression methods3. We examined genes located
in the hot spot region that gave rise to cis eQTL and that harbored
coding polymorphisms at highly conserved amino acids that induce
known phenotypic changes in yeast (Supplementary Data). MKT1
was the only gene in this hot spot giving rise to a cis eQTL and
harboring a coding polymorphism for a highly conserved amino acid
(D30G) previously shown to induce phenotypic changes in yeast33,34.
Therefore, we used a previously generated strain carrying the RM
version of the functional polymorphism (Gly30) in the BY genome
(YAD350 (ref. 33)) and profiled expression changes in synthetic media
to test whether MKT1 was a causal regulator for this hot spot. The
eQTL hot spot 11 subnetwork was significantly enriched for genes in
the MKT1 allele swap signature, with 698 of the genes in this signature
overlapping the set of 3,662 genes used to construct the network, and
124 of these overlapping the subnetwork comprised of 317 genes
(Fisher’s exact test P value ¼ 1.86 � 10–18). This result validates MKT1
as a major causal regulator for hot spot 11.

DISCUSSION
Previous yeast network reconstructions have focused on a more
limited number of genes in order to make the reconstruction
tractable24,28,35. Our integrative analysis combined large-scale geno-
type, gene expression, PPI and TFBS data to construct networks

comprised of more than 50% of the genes in the yeast genome
using a novel Bayesian network reconstruction method. The relative
utility of the resulting networks was highlighted by predicting
responses to independent experimental perturbations and the
known biology of the system. Specifically, we demonstrated that
networks constructed by incorporating genetic, TFBS and PPI data
were more predictive than a network constructed from expression data
alone. Further, our method of integrating diverse data was also
demonstrated to predict previously unknown interactions, which in
turn led to the identification of genes that are not well annotated, but
that nevertheless serve as causal regulators for eQTL hot spots.

The modules emerging from the coexpression network were shown
to elucidate the functional relevance of the different components of
the network. Of particular interest is our finding that the coexpression
network overlapped poorly with the PPI network, suggesting that the
PPI and coexpression data reflect complementary views of the system,
that the PPI data generated via high-throughput experiments is not
very specific19 or a combination of the two. We were able to identify
structures in the PPI network that overlapped well with the coexpres-
sion network only after we performed a clique-community analysis on
the PPI network to define the core, highly interconnected substruc-
tures of this network. Through this analysis, we found that the
overlapping structures were enriched for stable protein complexes,
likely explaining the good correlation between the PPI clique com-
munities and corresponding coexpression network modules.

The gold standard for assessing the predictive power of any network
model is prospectively validating predictions made from such a
model. We queried the different Bayesian networks constructed
using progressively more data (BNraw, BNqtl and BNfull) to predict
the causal regulators of the subnetworks enriched for genes linked to
the different eQTL hot spots in the BXR cross16. BNfull was demon-
strated to be the most predictive network, and five of the predictions
of previously unknown interactions made using BNfull were prospec-
tively tested experimentally, and all of these predictions were validated,
thus confirming the predictive power of the integrated network to
elucidate the regulatory control of some of the subnetworks. These
results are also consistent with a large-scale simulation study we
conducted to assess the extent to which genetic information could
improve the accuracy of Bayesian networks based on gene expression
data in a segregating populations27.

The integrative reconstructions carried out in our study represent
only the beginning steps needed to construct large-scale, accurate
whole-genome networks. A number of important limitations will need
to be addressed to further enhance the accuracy of this type of
network. First, the Bayesian network algorithm used in this study
does not permit loops, making it difficult to represent some types of
feedback, which are obviously an important control mechanism in any
biological system. Second, Bayesian networks do not effectively
represent time-series data36. These issues might be addressed by
using dynamic Bayesian networks, which explicitly include a temporal
representation of the interaction between nodes. Third, we recon-
structed networks from a limited amount of data generated from a
single population and under only a single biological condition. Given
the impact genetic background and environment can have on network
structure, with the connectivity structure of a network varying as a
function of genetic background and environment, populations repre-
senting different genetic backgrounds in different environmental
contexts will have to be studied to assess the impact on network
structure. However, these and other issues notwithstanding, our
results support that the construction of large-scale whole-gene net-
works based on genetic, gene expression, TFBS, PPI and related types
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of large-scale data can lead to networks that are capable of predicting
complex system behavior.

METHODS
Accession codes. NCBI GEO: all gene expression data generated for this study

have been deposited under accession number GSE11111. The gene expression

data for the BXR cross have been previously deposited into the GEO database

under accession number GSE1990.

Note: Supplementary information is available on the Nature Genetics website.
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