GARVAN
INSTITUTE

LogTransform Documentation

Description:

Author:

Date:

Release:

Summary

Apply a log transformation on a GCT file.

Dr Mark Cowley (Garvan Institute of Medical Research, Sydney
Australia), m.cowley@garvan.org.au

Kevin Ying (Garvan Institute of Medical Research, Sydney
Australia), k.ying@garvan.org.au

September, 2011
3.3

Apply a log base 2 transformation to data from a GCT file.

Why? Typically microarray data are log transformed. This is done for a number of
reasons, including: it stabilizes the variance; it compresses the range of data; and it
makes the data more normally distributed, which allows statistics to be applied to the

data.

Stabilizes the variance: for data on the linear scale, as the expression

level /signal gets higher, the variance also increases. Log transforming
reduces this dependence, so that the variance is more consistent throughout
the range of expression

Compresses the range of data: In a typical microarray experiment, most

genes have levels <100, with very few having large levels >10,000. When this
data is log transformed, the range shrinks from usually 1-65,000 to 0-16.

3000

2500

2000

stdev

1500

1000

500

unlogged data

logged data

o

stdev

5000

10000 15000 20000

mean



* Normally distributed data: For performing t-statistics and ANOVA'’s one of
the assumptions is that the errors* are normally distributed. This is
absolutely not the case for unlogged data & this violation of the statistical
assumption makes the statistical findings on unlogged data invalid.

o picture a bell curve, with a mean, and symmetrically distributed
‘errors’, vs an ‘| ” shaped curve with a mean way off to the left
and errors that are not symmetric

unlogged data logged data

8000
600 4

6000 -

400 —

Frequency

4000

Frequency

200
2000 -

0 Fae 0

.

T I 1 T T
0 5000 10000 15000 20000 4 6 8 10 12 14

Expression Level Expression Level (log2)

If all data are >= 1.0, then this is simple — the data will just be log transformed.

However, you cannot log-transform values <= 0, so if your data has some negative
values, then there are 3 simple strategies:

1. Truncate all values that are <= 1.0 to 1.0, and then log transform.

2. Add a positive value to all data points, so that the minimum value becomes
1.0, then log transform

3. Add a small positive value (eg 8) to all data points, which makes most data >=
1.0, and then truncate all remaining values <= 1.0 to 1.0

1) Is the simplest strategy. If the data is <= 1, then it's probably too low to be interesting
anyway, so just truncate the datato 1.0

2) This method ensures all data is positive. The downside to this is just one very
negative outlier, eg at -1200 causes a value of 1201 to be added to all data points which
will have a big impact upon the lowly-moderately expressed genes

3) This is a good compromise between 1 & 2. I've found with Agilent microRNA data,
adding +8 to all data pushes 85% of the values <=1 to >1, and the remaining 15% of
data will become truncated.

HINT: Since log2(1.0) = 0.0, you may want to filter out those probes whose log-
transformed values are all = 0. You can use the PreprocessDataset module (number of
columns above threshold=1 and column threshold=0.1), or the GeneFilter module

(coming soon).



Why do some microarray data have negative values anyway?

It's usually because of background subtraction. If a gene is expression close to, or just
below the ‘background’ level on the array, then these data may become negative. This is
certainly true is you use the llluminaExpressionFileCreator, with the background
subtraction mode = true, and is true for Agilent microRNA data.

Usage
To apply the strategies described above:
1. Truncating all values <= 1.0 to1.0
* NB: This step will be automatically applied by the module before log
transformation.
2. Add a positive value to all data points so that the minimum value will be at
least 1.0.
* Type “auto” in place of the “offset.value”
3. Add a small positive value to all data points and truncate remaining points.
* By specifying a value yourself (eg. 8) as the “offset.value”

To help you decide how to handle values <= 1.0, LogTransform will print out a summary
of the data before and after applying log transformation. Run the module once with your
GCT file and open “stdout.txt”. The summary should look something like:

negvals.unlogged.gct contains:

24 samples and 47323 genes

352589 (31.000 %) out of 1135752 are < 1
329203 (29.000 %) out of 1135752 are < 0
Min. : -47.846500

Max. : 38885.120000

References & Links

Parameters (* = required)

Name Description

input file* The GCT file to be log transformed

output file* The name of the log transformed GCT file to write out.
Default: <input.file_basename>_log2.gct




offset value The numeric amount to add to the data before log
transformation.

“auto” — auto-offset: shift all data so that values will be > 1
Default: 0

Input Files

1. input file
An unlogged GCT file.
All values <= 1.0 will be set as 1.0 before applying the log

Output Files
output file

The log transformed GCT file
stdout.txt

A file containing details of the run, including a summary of the data before and after log
transformation (see above: Usage)

Warning/Error Messages:
“WARNING: data may already be log transformed”

The module checks if all values in the original GCT is below 60, if so, it is likely that the
GCT file has already been log transformed.

Example Data
ftp://ftp.broadinstitute.org/pub/genepattern/datasets/all aml/all aml test.gct

Citing this module

Cowley, M.J., Ying, K., LogTransform — a GenePattern module for applying a log
transformation on GCT files (not published).

Platform Dependencies

Module type: Preprocess & Utilities
CPU type: any
0sS: any

Tested on Ubuntu 10.10
Not tested on Windows

software nil

Language: R>=25






